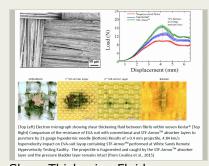
Small Business Innovation Research/Small Business Tech Transfer

Shear Thickening Fluid Enhanced Textiles for Durable, Puncture- and Cut-Resistant Environmental Protection Garments, Phase I


Completed Technology Project (2016 - 2017)

Project Introduction

This Small Business Technology Transfer Research Phase I proposal will develop and advance the commercialization of STF-ArmorTM nanocomposite materials for use in Environmental Protection Garments (EPG) for long-duration exploration missions, such as the exploration of Mars. The proposed STTR research leverages the results of NASA-sponsored research conducted at the University of Delaware, combined with a commercialization pathway provided by STF Technologies LLC and our commercialization partners, to develop advanced EPG materials to improve astronaut safety. Shear thickening fluid (STF) nanocomposite textiles have been demonstrated to offer a mass-efficient means for improving the puncture and MMOD resistance of EVA suits as a superior absorber layer. The proposed research will advance the commercialization and TRL by optimizing STF materials, treatments and prototype EPG lay-ups to provide enhanced durability, puncture-, cut-, and dust-resistance while simultaneously meeting the requirements for full integration into EPGs and suit systems.

Primary U.S. Work Locations and Key Partners

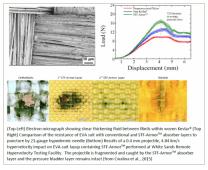
Shear Thickening Fluid Enhanced Textiles for Durable, Puncture- and Cut-Resistant Environmental Protection Garments, Phase I

Table of Contents

Project Introduction	1	
Primary U.S. Work Locations		
and Key Partners	1	
Images	2	
Organizational Responsibility		
Project Management	2	
Technology Maturity (TRL)	2	
Technology Areas	3	

Small Business Innovation Research/Small Business Tech Transfer

Shear Thickening Fluid Enhanced Textiles for Durable, Puncture- and Cut-Resistant Environmental Protection Garments, Phase I



Completed Technology Project (2016 - 2017)

Organizations Performing Work	Role	Туре	Location
STF Technologies, LLC	Lead Organization	Industry	Newark, Delaware
Johnson Space Center(JSC)	Supporting Organization	NASA Center	Houston, Texas
University of Delaware	Supporting Organization	Academia	Newark, Delaware

Primary U.S. Work Locations	
Delaware	Texas

Images

Briefing Chart Image

Shear Thickening Fluid Enhanced Textiles for Durable, Puncture- and Cut-Resistant Environmental Protection Garments, Phase I (https://techport.nasa.gov/imag e/126517)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

STF Technologies, LLC

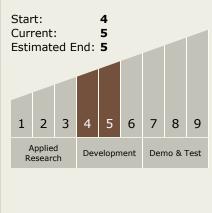
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

Richard Dombrowski

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Shear Thickening Fluid Enhanced Textiles for Durable, Puncture- and Cut-Resistant Environmental Protection Garments, Phase I

Completed Technology Project (2016 - 2017)

Technology Areas

Primary:

- TX06 Human Health, Life Support, and Habitation Systems
 - □ TX06.2 Extravehicular Activity Systems
 - ☐ TX06.2.1 Pressure Garment

